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S U M M A R Y  
The Earth’s zonal response coefficient K is estimated from the tidal signals in the 
observed length-of-day (LOD) data. Its magnitude and phase are functionals of the 
Earth’s internal structure and dynamics. In this paper, an analysis of 13 years of 
precise LOD data (1980-1992) reveals strong signals for nine zonal tidal groups 
ranging from 5 to 35 days in period. Numerical estimates of K for 27 major tides are 
thus obtained, 11 among which are considered sufficiently high in signal-to-noise 
ratio to provide meaningful geophysical constraints on the Earth’s rotational 
dynamics. The results favour a K magnitude close to, but somewhat smaller than, 
0.315, which is the theoretical value for an elastic mantle completely decoupled from 
the fluid core plus equilibrium oceans. A small amount of dispersion is also 
detectable, where shorter periods tend to have lower K magnitude and larger phase 
lag. Our K magnitude estimates are consistent with two recently published 
non-equilibrium ocean-tide models and an anelastic response in the mantle, 
although an equilibrium response in the ocean and a purely elastic response in the 
mantle is not disallowed. Phase lags of a few degrees are required by both 
ocean-tide models, and by our data. 
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1 INTRODUCTION 

The rotational speed of the solid earth varies slightly with 
time, causing variations in the length of day (LOD). Precise 
measurements of LOD in the last three decades have 
revealed .variations on time-scales ranging from decadal, 
interannual, seasonal, intraseasonal, down to days and 
(recently) sub-daily. Apart from a secular ‘braking’ (e.g. 
Lambeck 1980) and small semidiurnal librations (Chao et ai. 
1991) due to external luni-solar tidal torques, LOD varies as 
a consequence of internal geophysical mass movements 
under the conservation of angular momentum. These mass 
movements occur in all components of the Earth: 
atmosphere, hydrosphere, solid mantle and fluid core. 

In particular, as first pointed out by Jeffreys in 1928, LOD 
will change as a result of changes in the Earth’s axial 
moment of inertia caused by zonal tidal deformations in the 
Earth. The amount of tidal deformation, under given 
forcing, depends on the Earth’s physical structure and 
dynamical behaviour. The response of an elastic, spherically 
symmetric earth to external forcings is described by a set of 
transfer functions, namely Love numbers, which are 
dimensionless gross-Earth functionals. Among them only 
the second-degree zonal potential raised by the luni-solar 
tides is of concern here. Such a tidal potential induces a 

second-degree zonal response in a spherically symmetric 
earth; and only such response can affect LOD via 
conservation of angular momentum, as all other harmonics 
are ‘orthogonal’ to ALOD. The induced ALOD in an elastic, 
spherically symmetric earth is thus proportional to the 
second-degree zonal transfer function, or the Love number 

The concept of the transfer function can be extended 
naturally to include other dynamic behaviour of the Earth in 
the geophysical excitation of ALOD. Called the zonal 
response coefficient K (as a function of frequency o) by 
Agnew & Farrell (1978), it is defined as the ratio of the 
fractional change in LOD to the prescribed second-degree 
zonal tidal potential normalized with respect to the Earth’s 
surface gravitational potential: 

ALOD(w) 

where G is the gravitational constant, a is the Earth’s mean 
radius and C its axial moment of inertia, and the prescribed 
tidal potential equals the tidal potential amplitude V, 
multiplied by the fully normalized surface spherical 
harmonic Yz0. 

If the Earth were entirely elastic, then its K would be 
identical to the (static) k2 .  This can be seen from the 
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conservation of angular momentum and MacCullagh’s 
formula, assuming zero change in the trace of the inertia 
tensor (Rochester & Smylie 1974). The value of k ,  can be 
computed according to elastic, spherically symmetric earth 
models, and is found to be not very sensitive to model 
differences. In this paper we shall adopt a constant 
k ,  = 0.300 [which is the average of 0.299 by Wahr, Sasao & 
Smith (1981) and 0.301 by Smith & Dahlen (1981), both 
based on the 1066A earth model of Gilbert & Dziewonski 
(1975)l. However, the presence of the oceans, the fluid core, 
and anelasticity in the mantle combine to make K differ from 
0.300. Model computations show that the tidal deformation 
of an equilibrium ocean would increase the magnitude of K 

by some 16 per cent (Agnew & Farrell 1978; Merriam 1980), 
whereas a complete decoupling of the fluid core from the 
mantle in ALOD excitation would reduce K by about 11 per 
cent (Merriam 1980; Yoder, Williams & Parke 1981; Wahr et 
al. 1981). Such an idealized earth model would then have 
K =0.315. This value will be used below as a reference 
‘baseline’. 

The real Earth deviates somewhat from this idealized 
baseline state; it is this deviation that is of particular 
geophysical interest here. The ocean tides are known to 
deviate from equilibrium, and the strength of the 
core-mantle (de)coupling depends on the forcing mechan- 
ism under the time-scale in question. These facts will 
introduce frequency dependence, or dispersion, in K as 
explicitly indicated in eq. (1). Furthermore, K becomes 
complex-valued due to tidal energy dissipation occurring in 
the ocean, mantle and core. The associated (non-zero) phase 
lag is a measure of the rate of this dissipation. Thus, 
observations of K ( W )  in magnitude and phase would provide 
important information towards the understanding of the 
dynamic properties of the Earth. 

Groundwork has been laid and important progress has 
been made on this line of study, notably by Angew & Farrell 
(1978), Merriam (1980), Yoder et al. (1981), Wahr ef al. 
(1981), Luo et af. (1987), Hefty & Capitaine (1990), Nam & 
Dickman (1990), McCarthy & Luzum (1993) and Robertson, 
Ray & Carter (1994). A major obstacle, nevertheless, has 
been the large uncertainties in the estimates of the tidal 
signals in LOD. The present paper re-examines this 
problem. We present a new set of estimates, both of the 
magnitude and the phase lag of the tidal signals based on 
modern LOD data. We analyse 13 years of LOD data, 
1980-1992, for 27 zonal tides with periods ranging from 5 to 
35 days. Among these, the 11 tides with the highest 
signal-to-noise ratios are selected for further geophysical 
study. 

2 DATA ANALYSIS  

The LOD data that we use are derived from the ‘Space92’ 
universal time (UT1) series (Gross 1993a), spanning 13 
years from 1980 January 1.0 (at 00002, or midnight 
Greenwich Mean Time), to 1992 December 31.0. The 
Space92 UT1 data are the result of a Kalman filter 
combination of all the available space geodetic measure- 
ments of Earth orientation (where the zonal tidal signals are 
retained); they are given at nominal daily intervals. Since 
1985, the observational data that has gone into the 
combined solution has included daily measurements. Prior 

to that the more typical sampling interval was 3 to 5 days. 
Subdaily fluctuations are to some extent averaged out, and 
major diurnal and semidiurnal tidal terms further removed 
according to a model as given in Herring & Dong (1994). 
Any remaining aliasing is believed to be negligible. 

The LOD is obtained by a simple day-to-day differencing 
of UT1 data. A linear interpolation and resampling is 
subsequently applied to bring the nominal sampling back to 
00002. Fig. l(a) shows the ALOD time series in units of 
milliseconds (ms). The mean value has been removed. We 
precluded pre-1980 data because of their poorer quality and 
generally less frequent observations. We choose, however, 
to use as long a timespan T as feasible, in order to take 
advantage of the ‘processing gain’, that is, the fi increase 
in the signal-to-noise ratio (SNR) for harmonic functions. 
Higher values of the SNR yield smaller uncertainties in the 
estimates (see eq. 3 below). 

Another crucial benefit of the higher SNR is in resolving 
spectral lines that are close in frequency. In Fourier analysis 
of random signals, frequency resolution is nominally limited 
by the inverse of T. For coherent functions (such as tides), 
however, resolutions higher than 1 / T (‘super-resolution’) 
are readily achievable. As an extreme example, imagine a 
time series consisting of two sinusoids of known frequencies 
recorded with infinite percision and zero noise. Then, 
obviously, only four points of the time series are required to 
solve for these two sinusoids analytically, no matter how 
close the two frequencies are, or how these four points are 
sampled in time. In reality, the resolving power is dependent 
upon the SNR, as demonstrated by Munk & Hasselmann 
(1964), and hence not limited by 1/T as long as the SNR is 
sufficiently high. In our analysis below, tidal terms separated 
by 1/(18.6 years) are well separated using just 13 years of 
data. 

Figure l(b) displays the power spectrum of ALOD of Fig. 
l(a). The spectrum is computed using the multitaper 
technique of Thomson (1982), which provides robust and 
minimum-leakage spectral estimates. Seven orthogonal 
tapers with the time-bandwidth product of 4n were adopted 
in the computation. The rectangular shape of the spectral 
peaks is characteristic of a multitaper spectrum. The power 
spectrum shows the peaks of eight major tidal groups, as 
well as the decadal and seasonal signals above a red 
background. Within each tidal group the individual 
components are not visibly resolvable. The red background 
originates primarily from the ALOD signal caused by the 
variation in the atmospheric angular momentum (AAM). 

Recognizing this, our data analysis consists of two stages 
of least-squares fit performed on the ALOD time series. The 
first fit is an interim one, and the goal is to yield a ‘clean’ 
tidal series by removing non-tidal excitation sources. To do 
this we model the ALOD time series as a linear combination 
of the major excitation terms: 

ALOD = decadal term + 3 seasonal terms 

+ AAM + 27 zonal tide terms 

+ un-modelled noise. ( 2 )  

The decadal term in (2) is empirically chosen to be ‘a 
sixtbdegree polynomial. It accounts for the slow undulation 
(and the mean value) in ALOD, even though the 
geophysical origin of this undulation is presently uncertain. 
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figure 1. (a) The daily ALOD time series used in this study, from 1980 January 1.0 to 1992 December 31.0. A mean value has been removed. 
(b) Its multitaper power spectrum in the frequency range of 0-80 cycles per year, showing strong tidal and seasonal signals superimposed on a 
red background due to AAM. 

The three seasonal terms in (2) are annual, semi-annual, and 
terannual. Although, as is well known, AAM explains most 
of the observed seasonal variation in ALOD, other 
contributions such as oceanic angular momentum, continen- 
tal water storage and solid tides are all present in ALOD at 
seasonal periods. The seasonal terms are included here to 
account for these contributions. The seasonal and tidal 
ierms are each represented by a sine wave plus a cosine 
wave. 

The AAM variation is known to be a major, wide-band 
source for ALOD excitation (e.g. Barnes et al. 1983; Rosen, 
Salstein & Wood 1990 Hide & Dickey 1991). Removing it 
makes a decisive difference (and improvement) in 
subsequent tidal estimates. For example, studies based on 
older UT1 data and without removing AAM often yield 
K(Mrn) < K(Mf), whereas more recent ones in which AAM 
is removed tend to conclude the opposite [see Nam & 
Dickman (1990) for a summary]. 

We concatenate two AAM series to match the 13-year 
span of ALOD: the ECMWF (European Centre for 
Medium-range Weather Forecasts) AAM series prior to 
1983 September 28.0, and the JMA (Japan Meteorological 
Agency) AAM data that has become available since that 
date. The AAM is the sum of the zonal wind term and the 
pressure term. The wind term is the dominant term in AAM 
and must be evaluated from global zonal wind speed at all 
altitudes. The ECMWF data cover altitude only up to the 
100mb level (encompassing 90 per cent of the mass of the 
atmosphere), while JMA covers up to 10 mb (99 per cent of 
the atmosphere). The JMA series furthermore appears to be 
more homogeneous over time, but has to be resampled 
(here by linear interpolation) to conform to our OOOOZ daily 

sampling. There seems to be no discontinuity at the junction 
of the two sections after a mean has been removed from 
each section. The pressure term is relatively small. It is often 
evaluated under two idealized extremes: with or without the 
inverted-barometer (IB) effect. The IB is an idealized effect 
which assumes a complete and instantaneous isostatic 
response of the ocean water level to the changing 
barometric loading and unloading. The reality presumbly 
lies somewhere in between the two extreme cases of IB and 
non-IB. Here we include both pressure terms (in addition to 
the wind term) in the AAM in eq. (2) for a determination of 
the optimal linear combination of them. This empirical 
procedure ensures the optimal removal of the AAM 
influence from ALOD. 

The AAM series was further processed before fitting to 
eq. (2): it was moderately low-pass filtered at 50 cycles per 
year (cpy), for the following reasons. (i) Beyond about 50 
cpy the AAM data are found to be poorly correlated with 
ALOD (e.g. Dickey et al. 1992). (ii) Our computed power 
spectra of AAM is somewhat less red than that of the 
ALOD used here (Fig. lb). They coincide well at low 
frequencies, but the AAM power gradually exceeds the 
ALOD power towards the high-frequency portion of the 
spectrum at around 50 cpy. Therefore we low-pass filter the 
AAM series in order not to 'contaminate' ALOD (as AAM 
is later subtracted) at high frequencies where some of the 
tides reside. 

The task now is to perform an optimal estimation of the 
first four sets of terms in eq. (2), with (7 + 3 X 2 + 3 + 27 X 
2) = 70 parameters, so that the variance of the remaining 
un-modelled noise is minimized. This is achieved through a 
linear least-squares fit to (2). The result is used to subtract 



768 B. F. Chao, J. B. Merriam and Y. Tamura 

the first three sets of terms. The residual series is then 
high-pass filtered with a zero-phase filter at the cut-off 
frequency of 2 cpy (see below for a reason). The result is 
called ALOD, below (T for tide), shown in Fig. 2(a). 

The multitaper power spectrum of ALOD, is shown in 
Fig. 2(b). With a background spectrum much lower than 
that in Fig. l(b), nine tidal groups (cf. Table 1) are clearly 
revealed. To demonstrate how ‘clean’ ALOD, is, one can 
subtract the tidal estimate [the fourth term in (2)] from 
ALOD. One can then do yet another least-squares fit, on 
this difference, of the first three sets of terms in (2) and 
subsequently subtract these fits to yield our best estimate of 
the residual ‘noise’ series. The latter, together with its 
power spectrum (not shown), indeed show virtually no 
power left at the tidal frequencies. This residual time series 
also demonstrates the need for the high-pass filter to yield 
ALOD, above: otherwise, a strong -2-year undulation 
during the first 3.7 years would remain in ALOD,, possibly 
having an adverse effect on our subsequent tidal fit. This 
undulation arises as a result of the exclusion of high-altitude 
wind data in the ECMWF data set used for the first 3.7 years 
in our AAM series: any stratospheric AAM, particularly 
that associated with the quasi-biennial oscillation (QBO), 
remains unaccounted for during that period. It is indeed 
found that the undulation matches virtually in entirety with 
the QBO AAM computed by Chao (1989). 

Our tidal series ALOD, is then used in a refined, second 
stage of least-squares fit, this time mainly for the 27 tidal 
terms, but the three seasonal terms were still included to 
absorb any seasonal power that might remain in ALOD,. 
There are thus 60 parameters to be fitted, out of which 54 
are targeted for our tidal components. Finally, the tidal 
ALOD estimates in terms of sine and cosine amplitudes 

Tahle 1. Estimates of K magnitude and phase lag (in degrees) with 
their lo uncertainty, obtained from 11 zonal tidal signals in 
observed ALOD. The baseline is the theoretical tide amplitude 
predicted by a K of 0.315, given here for reference. 
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are converted into the magnitude and phase. They are 
displayed in Table 1 and discussed in the next section. 

3 RESULTS AND DISCUSSION 

Our final results (Table 1) agree well with the theoretical 
baseline values, despite the large range in amplitude from 
several to several hundred microseconds (ps). The baseline 
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Figure 2. As Fig. 1, but for the ‘clean’ tidal signal (designated as ALOD, in the text) extracted from ALOD by removing the decadal, 
interannual and seasonal variations as well as the (low-passed) AAM influence. 



Zonal  tidal signals in length of day 769 

magnitude, as explained above, corresponds to a theoretical 
value of K = 0.315, whereas the baseline phase is simply that 
of the prescribed tidal potential, all according to the tide 
table of Tamura (1993). The magnitude and phase are 
sometimes given in terms of the universal time (UTl), which 
represents the cumulative effect of ALOD in Earth 
orientation. To make the conversion to UT1, the amplitude 
in ALOD should be multiplied by the corresponding period 
in days divided by 2n, while the phase angle should be 
retarded by 90". 

It is the departure of the estimates from the baseline 
values that are of geophysical interest. Without error 
bounds, the estimates are by themselves of little geophysical 
use. The standard deviations (o) of the estimate assuming 
zero-mean, white, additive noise can be evaluated according 
to the following formula from Chao & Gilbert (1980): 

(3) u(amp1itude) 1 
= a(phase) = ~ 

amplitude ./z SNR' 
where the phase is in radians, and SNR is the signal-to-noise 
ratio for spectral amplitude of a harmonic function in the 
frequency domain. To evaluate the SNR, we take the 
baseline value as the signal amplitude, while the noise 
amplitude is read off the envelope of the background noise 
spectrum from Fig. 2(b) (with proper conversion in units). 

We present the final estimates in Table 1. Columns 1 and 
2 give the period of the tides in (solar) days and the baseline 
tidal amplitude in ALOD (based on K = 0.315). Our tidal 
amplitude estimates are converted into equivalent K 

magnitude (equation 1) and given in Column 3 with the lw 
uncertainty (eq. 3). Column 4 gives the corresponding 
phase-lag estimates (with respect to baseline phase), also 
with the lo uncertainty. Table 1 only lists the estimates of 
the K magnitude and phase lag for the 11 (out of 27) tides 
that have the highest SNR: u(magnitude) < 0.005 and 
a(phase) < 10". They are plotted in Fig. 3, relative to the 
baseline values. 

3.1 The non-equilibrium oceans and core-mantle 
decoupling 

Since the equilibrium ocean tide has such a large influence 
on K it is worthwhile to examine the consequences of a 
non-equilibrium tide. The long-period ocean tides are 
known to depart from equilibrium. Miller, Luther & 
Hendershott (1993) and Cartwright & Ray (1990) 
summarize the character of the Mm and Mf tides. 
Amplitudes are close to equilibrium, but they may slightly 
exceed equilibrium in the tropics and they are a little smaller 
than equilibrium at mid-latitudes. At high southern latitudes 
they are below equilibrium, and at high northern latitudes 
they are greater than equilibrium. Their phase leads the 
equilibrium tide at high latitudes, and lags the equilibrium at 
low and mid-latitudes. Most of the axial angular momentum 
of the tide is at low latitudes, so the character of the tide at 
low latitudes controls its effect on LOD. This means that the 
dynamic tide ALOD signal should then lag the equilibrium. 
Since the ocean contributes about 16 per cent to K ,  and the 
lag of the dynamic tide in the tropics is about 20°, the lag of 
K should be about 3". This is what is observed. 

The equilibrium ocean makes a contribution to ALOD 
only through the change in its inertia tensor (the relative 

angular momentum, i.e. the 'motion term', due to 
equilibrium tidal currents in the axial angular momentum 
vanishes). In the dynamic tide, a westward current is raised 
in the tropics as a result of conservation of angular 
momentum acting on the equatorial bulge of the zonal tides. 
This current results in a small decrease in the in-phase 
amplitude of the total angular momentum. The phase lag in 
the tropical ocean seems to be the result of the propagation 
time of a gravity wave from the strongly excited Arctic 
ocean to the tropical Pacific (Miller et al. 1993). Friction 
further increases the phase lag by slowing the propagation of 
these gravity waves, so that friction has the somewhat 
counter-intuitive effect of driving the tide further from 
equilibrium. The net effect on K is a small decrease in the 
in-phase part, and the creation of an out-of-phase part of 
about the same magnitude as the decrease in the in-phase 
part. 

Seiler (1991) has recently computed the total angular 
momentum of the Mm, M L  and M f '  tides based on the tide 
model used previously by Brosche et al. (1989). Dickman 
(1993) has computed the effect on UT1 of the total angular 
momentum involved in seven long-period tides obtained by 
a spherical harmonic theory. Table 2 shows the long-period 
effects on UT1 calculated by Dickman (1993) and by Gross 
(1993b) using the total angular momentum of Seiler (1991). 
In both cases, the effect on UT1 is computed assuming a 
complete decoupling of the core from the mantle. 

As explained above, K = 0.315 for an equilibrium ocean 
response and a purely elastic mantle decoupled from the 
core. Merriam (1982) has shown how this is resolved into 
contributions from the solid earth and oceans: 

= Ksolid e a r t h  + Kweans 

= 0.268 + 0.048 = 0.315, 

with no core-mantle coupling 

= 0.302 + 0.039 = 0.341, 
with perfect core-mantle coupling. (4) 

Note that core-mantle coupling has opposite effects on 
Ks,l,d earth and K,,,~,,: decreasing the amount of core- 
mantle coupling decreases KSolid earth but increases K,,,,,~. 

This result somewhat masks the overall effect of 
core-mantle coupling on K ,  but, since the effect on the solid 
earth dominates, there is an overall decrease in K as the 
strength of core-mantle coupling decreases. Formulae (4) 
allow us to compare the K that would be expected with any 
dynamic ocean tide. First we compute the UT1 signal with 
K = 0.268, which is the solid earth value, and then we add 
the expected UT1 signal of the dynamic ocean model. The 
total is then normalized by the solid earth signal to give K .  

The dynamic ocean UT1 signal depends on the angular 
momentum of the oceans and the degree of core-mantle 
coupling, but the range of this effect is small (the difference 
between a completely decoupled core and a perfectly 
coupled core is only 0.009 in K ~ ~ ~ ~ ~ ~ ) .  The evidence is so 
strongly in favour of a completely decoupled core (see also 
Chao 1994) that we can safely assume complete core 
decoupling in the construction of a dynamic K,,,,,~. Column 
2 of Table 2 is the baseline UT1 signal expected with 
K =0.315. Using formulae (4), we obtain the UT1 signal 
expected on an oceanless earth (Column 3). Column 4 shows 
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Figure 3. (a) 11 K magnitude estimates whose 1~ uncertainties are less than 0.05, plotted (as 0) against frequency. The dashed lines indicate 
the K = 0.315 baseline and the static Love number k ,  = 0.300. (b) The corresponding 11 estimates for the K phase lag whose 1u uncertainties 
are less than 10". relative to the zero baseline. 

the (in-phase, out-of-phase) components of the dynamic 1 divided by 0.315) and phase lag, given in the last two 
oceans' contribution to UT1, from Dickman (1993) and columns. 
Seiler (1991) models. Adding this to the oceanless earth Any frequency dependence of K must come from 
value, we have, in Column 5,  the total UT1 signal of the core-mantle coupling, mantle anelasticity, or the ocean 
earth with dynamic oceans. This is then converted to K tides. Core-mantle coupling cannot be variable enough to 
magnitude (by normalizing with respect to period in Column amount to anything across the narrow zonal tide frequency 
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Table 2. The theoretically predicted K assuming no core-mantle coupling and the dynamic ocean 
tides. 

(1) 

(days) 

Tide: Period 

Mm: 31.8119 

Mm: 27.5546 

Msf. 14.7653 

Mf 13.6608 

Mf: 13.6334 

Mtm: 9.1329 

9.1207 

Mm: 27.5546 

Mf 13.6608 

Mf: 13.6334 

-184.8 -156.7 ( -28.1, 2.4) (-184.8, 2.4) 

-837.3 -710.0 (-125.8, 11.0) (-835.8, 11.0) 

-74.4 -63.1 ( -10.5, 1.8) ( -73.6, 1.8) 

-785.8 -666.4 (-109.2, 21.2) (-775.6, 21.2) 

-325.7 -275.7 ( -45.1, 8.8) ( -320.8, 8.8) 

-100.8 -85.5 ( -12.4, 3.8) ( -97.9, 3.8) 

-41.6 -35.3 ( -5.1, 1.5) ( -40.4, 1.5) 

-837.3 -710.0 (-105.0, 25.3) (-815.0, 25.3) 

-785.8 -666.4 ( -86.0, 35.0) (-752.4, 35.0) 

-325.1 -275.7 ( -35.6, 14.5) (-311.3, 14.5) 

band considered here, and we will show that anelastic effects 
are also nearly constant across this band. This leaves a 
frequency-dependent ocean tide admittance as the only 
reasonable cause for the frequency dependence of K ,  within 
this band. The ocean response to tidal forcing is known to 
be a slowly varying function of frequency (Platzman 1984). 
In other gross measurements of tidal response, for example 
tidal loading in gravity observations, the loading signal has a 
smooth, almost linear variation with frequency across the 
entire diurnal and semidurnal bands (Merriam 1995). Since 
dynamics are much less important in the long-period band in 
comparison, there is even more reason to expect a small 
frequency dependence in this band. Indeed, the evidence 
from our measurements, and from the tide models of 
Dickrnan and Seiler, suggests that this is so. There are 
known non-linear tides at Mrn (resulting from an interaction 
between M2 and N,),  at Msf ( M ,  and S,), and at Mf ( K ,  and 
01), but these are small and likely to be local, shallow-water 
effects, which should average out of a global parameter such 
as K. Thus, it is reasonable to expect the frequency 
dependence of K to be so weak over the zonal tide 
frequency band as to appear nearly linear. Figs 4(a) and (b) 
show our measurements of the magnitude and phase lag of 
K ,  respectively, with a weighted least-squares fit to a straight 
line. The l c ~  envelopes on the best-fitting line are shown as 
dashed lines. 

Also shown in Fig. 4 are the predictions of K based on the 
theoretical tide models of Dickman and Seiler, which have 
only seven and three constituents respectively. They have 
therefore been linearly extended to cover the range of the 
11 tides measured well here. The seven Dickman models fall 
nearly on a straight line, which supports our earlier 
contention. The three Seiler tides are too close together in 
frequency to draw any conclusions with regard to linearity, 
but the slope of the fit to these three agrees well with that of 
the Dickman model. 

Both ocean tide models are in excellent agreement with 

0.315 0.7 

0.3 14 0.7 

0.3 12 1.4 

0.311 1.6 

0.3 11 1.6 

0.305 2.2 

0.305 2.2 

0.307 1.7 

0.302 2.7 

0.302 2.7 

our measurements on the frequency dependence of K ,  in 
magnitude and in phase. The Dickman model is in better 
agreement with our results in magnitude, but in somewhat 
poorer agreement in phase than the Seiler model. It appears 
to underpredict the phase lag by about 1.5" on average, 
implying a tropical phase lag that is too small by about 10". 
The linear frequency dependence of the phase for the Seiler 
model is in excellent agreement with our measurements. 
The linear fit for Seiler's magnitude is within la uncertainty 
of ours, but its mean is lower than the mean of ours by 
about 0.008. Since the total ocean effect on K is about 0.05, 
the disagreement in the mean is only one-sixth of the ocean 
tidal effect, which amounts to no more than 2mm in the 
equatorial region. 

If we accept that the difference in K,,,,,, between the 
Seiler and Dickman results is a measure of the uncertainty 
in both, then both models are compatible with our data. The 
differences in magnitude between our measurements and 
either tide model are easily explained by model 
uncertainties-no ocean tide model is good to much better 
than l m m ,  which is the difference between our measure- 
ments and the tide models. 

3.2 Mantle anelasticity 

Wahr & Bergen (1986, henceforth WB) have predicted the 
effects of anelasticity on the Love number k ,  at Mm and M f  
in the frequency band we examine here. These may be 
summarized by saying that anelasticity increases the 
magnitude and delays the phase. Both effects decrease with 
frequency. If we assume that the effect of anelasticity on k ,  
scales to its effect on K the same way as k ,  scales to K ,  that 
is, if AK -0.85 Ak,, then we can obtain an estimate for K 

with non-equilibrium oceans and anelasticity in the mantle. 
This procedure makes some simplifying approximations, but 
since the effect of anelasticity is small to begin with, the 
approximations should be adequate. In passing we note that 
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Frequency (cycle 1 year) 
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-15’ 
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Figure 4. The 11 estimates in Fig. 3 compared with model predictions. The solid line is a weighted least-squares fit of a straight line to our 
estimates, the dotted lines are the l a  uncertainty envelopes on the fitted line. The predicted K magnitude with the Dickman (1993) and Seiler 
(1991) ocean tides are shown (as X), linearly extended (dashed lines) to span the frequency band considered here. (a) For the K magnitude; (b) 
for the K phase lag. 

the ocean tide models of Dickman already accommodate effect on K extrapolated over the entire zonal tide band 
mantle anelasticity. By this procedure, we derive the results considered here. The line labelled Mean is the mean value 
in Table 3. The lines labeled Mrn and M f  are the predicted of the predicted anelastic effect, in the centre of this band. 
anelastic K based on K = 0.315 and the lower/upper bounds It can be seen that the frequency dependence of 
of WB. The line labelled Range is the range of the anelastic anelasticity is small, amounting to a decrease in magnitude 
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Table 3. The lower and upper bounds on K ,  with the anelastic earth 
models of k ,  from Wahr & Bergen (1986). 

ldQs&md I . h u a a d  
mag. phasep) mag. phasep) 

Mm (27.5546 d) 

Mf(13.6608 d) 

Ranse 
Mean 

0.318 0.1 

0.318 0.1 

0.001 0.01 

0.003 0.1 

of 0.001 and an increase in phase lag of 0.01" wit-. frequency 
across the zonal tide band. These are much smaller than the 
uncertainty on the linear change of our own measurements. 
When our measurements are corrected for either the 
Dickman or Seiler tide models, the resulting magnitude is 
almost independent of frequency, although small positive 
and negative frequency dependences of much larger 
magnitude than the WB predictions suggest are admissible 
at the la level. The corrected phases show a slight increase 
in the lag with frequency when either tide model is used, but 
a decrease with frequency is also admissible at the la level. 
The frequency band in consideration is simply too narrow to 
allow a reasonable constraint to be put on anelastic effects. 

The elastic mantle contribution to K is nominally 
calculated at seismic frequencies as the earth model used to 
generate this value is derived from seismic data. The 
increase in K from seismic frequencies to the zonal tide band 
is 0.005 for the WB lower bound, and 0.015 for the upper 
bound, so the bounds on the predicted K for an equilibrium 

0.330 0.6 

0.330 0.6 

0.004 0.0 

0.015 0.6 

ocean are then 0.320 and 0.330 in magnitude, and 0.1" and 
0.6" in phase. For the dynamic ocean tides the predicted K 

when anelasticity is included can be estimated by simply 
adding uniform shifts to the predicted dynamic tide K in Fig. 
4, and increasing the frequency dependence slightly. The 
range of uncertainty in the predicted K now includes the 
range of uncertainty in the ocean tide models and that of the 
WB anelastic earth models. Our results, shown in Fig. 5 ,  and 
summarized below, are consistent with the range of anelastic 
models represented by the WB lower/upper limits. 

The shaded area in Fig. 5 is the lo confidence interval on 
a weighted least-squares fit of a straight line to our 
measurements (same as in Fig. 4). The solid lines are the 
extreme range of the magnitude and phase of K implied by 
the uncertainties in the ocean tide models plus the 
lower/upper limits of the WB anelastic response. The 
combination of the Dickman tides and the WB upper limit 
provides the extreme upper bound on predicted K 

magnitude (Fig. 5a), while the combination of the Seiler 

1 
10 15 20 25 30 35 40 45 50 55 

Frequency (cycle I year) 

I I 
10 15 20 25 30 35 40 45 50 55 

Frequency (cycle I year) 

Figure 5. (a) The shaded area is the 1cr confidence interval (same as Fig. 4) on a weighted least-squares linear fit to observed K magnitude with 
frequency. The solid lines are the extreme lower/upper bounds on the predicted K magnitude using Dickman (1993) and Seiler (1991) tides and 
the Wahr & Bergen (1986) bounds on anelasticity. (b) Same for the phase lag of K .  
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tides and the WB lower limit gives the extreme lower bound 
on K magnitude. The combination of the Seiler tides and the 
WB upper limit provides the extreme upper bound on the 
phase lag (Fig. 5b), and the combination of Dickman tides 
and the WB lower limit gives the extreme lower bound on 
the phase lag. It should be noted that most of the range 
between the extreme lower and upper bounds reflects the 
uncertainty in the ocean tide. This means that a more 
stringent observational constraint on anelasticity in the 
mantle awaits an improvement in ocean tide models. 

4 SUMMARY A N D  CONCLUSIONS 

We have measured the magnitude and phase of the zonal 
response coefficient K for 27 zonal tides in the long-period 
band from 5 to 35 days. Of these, we have selected the 11 
with the smallest uncertainties for further analysis. The 
magnitude estimates are found to favour strongly a complete 
decoupling of the core from the mantle within this band. By 
arguing on reasonable grounds that the largest frequency 
dependence within the band should be due to the ocean tide 
admittance, and further that the band is too narrow and the 
frequency dependence of the ocean tide admittance so 
benign, the frequency dependence in K should be almost 
linear across this band. We then placed limits on the 
frequency dependence in magnitude and in phase lag. These 
have been shown to be due to the departure of the ocean 
tide from equilibrium as demonstrated in recent tide models. 
We have also found that our results are consistent with the 
range of anelastic models of the mantle. A tighter constraint 
on mantle anelasticity awaits improvements in ocean tide 
models. 
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